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In order to isolate the vibration transmitted to machines or structures from a floor and
to reduce vibration caused by a shock force applied directly to them, a new method of
on–off control for the spring support is presented in this paper. The suspension system
includes the auxiliary spring and brake mechanism that are designed to control the
clamping friction force at the end of the spring. The clamping friction force is varied
according to the switching law, which is deduced from the variable structure systems (VSS)
control theory. The switching law takes into account the energy dissipation due to friction.
In the numerical simulations, the performance of the impulse response reduction and the
displacement transmissibility is investigated. The results show that the method is effective
in suppressing shock motion and isolating vibration.
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1. INTRODUCTION

Vibration reduction and isolation to protect mechanical systems, vehicles and structures
from the shock force and vibration environment present important and difficult problems.
The conventional passive device composed of a spring and a damper suffers from
inconsistent difficulties for these requirements, because the vibration caused by a shock
force applied directly to the machine is reduced by increasing the spring stiffness and the
damping, while the vibration transmitted from the floor is isolated by decreasing them.
Therefore, the optimal spring stiffness and damping have been decided as a result of
trade-off between these requirements, and the performance is limited. To overcome this
limitation, active vibration control systems consisting of force and control devices that can
generate forces based on state feedback have been the subject of extensive research efforts
in recent years. Although active vibration control systems have high performance, they are
more costly, more complex and less reliable than passive systems.

On the other hand, semi-active vibration control systems that vary the damping or
stiffness properties of a passive element in response to the instantaneous states of motion
compensate for the drawbacks of the active system. Hydraulic semi-active dampers with
electromagnetically controlled valves have been investigated by many researchers and
applied to vehicle suspensions [1–4]. Friction damping is also controlled by varying the
force normal to a friction interface [5]. Several studies have investigated the effects of
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restoring force associated with stiffness term on vibration suppression of a flexible beam
or a string subject to an axial force [6–8]. Recently, Yamaguchi et al. [9] proposed a
suspension system with stiffness control based on the sliding mode of the variable structure
systems (VSS) theory [10–12]. The stiffness-controllable spring is realized by varying the
axial force for the two straight bars that are hinged to the mass in a line perpendicular
to the direction of mass motion. Another type of stiffness control is the on–off control of
the spring support clamping with the brake assembly. Onoda et al. [13] proposed the
control logic, which changes two spring stiffness values depending on the state of mass
motion by using the phase plane concept. However, the approach neglected the inertia of
the stiffness member and assumed that the stiffness change was achieved instantaneously.
To improve this impractical assumption, Warkentin and Semercigil [14] introduced the
finite time duration during which the spring support remains unclamped, and investigated
the effect on the transient response. They further showed that the time lag from the instant
of peak displacement for the control action improves the performance of the system.
However, the roles of the finite time duration and the time lag in the control logic have
not been clarified theoretically. It is also noted that friction in the brake mechanism
contributes to the damping and enhances the energy dissipation, although the effect of
friction is not included in the analysis of Onoda et al. [13] and of Warkentin and Semercigil
[14].

The purpose of this paper is to present a new method of on–off control for the spring
support, in order to isolate vibration transmitted to machines or structures from the floor
and to reduce vibration caused by a shock force applied directly to machines or structures.
The suspension system includes the auxiliary spring and brake mechanism that are
designed to control the clamping friction force at the end of the spring. The clamping force
is varied according to the switching law, which is deduced from the VSS control theory
taking account of the sliding mode. The switching law also takes into account the energy
dissipation due to friction. The proposed method clarifies theoretically and develops the
concept of control logic based on the phase plane proposed by Onoda et al. [13], and the
roles of the finite time duration and time lag introduced by Warkentin and Semercigil [14].
In numerical simulations, the performance of the impulse response reduction and the
displacement transmissibility is investigated. The results show that the method is effective
in suppressing shock motion and isolating vibration.

2. SYSTEM MODEL OF ON–OFF SPRING SUPPORT CONTROL

The concept of on–off control of the spring support is idealized as shown in Figure 1.
In Figure 1, the mass m supported by a spring of stiffness ka is the main object to be reduced
by vibration caused by the shock force applied directly or transmitted from the floor. The

Figure 1. The system model.
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Figure 2. The friction force F at a joint.

auxiliary spring of stiffness ks is employed to implement the control technique and is
designed to control the upper end support by the joint switching device of mass ms such
as a brake mechanism. It is assumed that the mass ms is much smaller than m and that
the stiffness ks is much larger than ka . The state of motion is classified into three cases as
follows: (A) the joint is not clamped (support off) and the masses m and ms move freely
of each other—in this case, the mass m is supported by the single spring of stiffness ka ;
(B) the joint is clamped (support on) and the masses m and ms are stuck together with
no relative motion—in this case, the total mass of m and ms is supported by two springs
of stiffness ka and ks ; (C) the joint is clamped (support on), but the relative motion between
the masses m and ms occurs owing to interfacial slip. This is a single-degree-of-freedom
system with no energy dissipation for both cases (A) and (B), although the natural
frequencies are different. On the other hand, the system becomes complicated and the
energy is dissipated due to friction damping during slip for case (C).

Equation of motion for case (C) is given by

m(d2y/dt2)=−ka (y− z)+F, (1)

ms (d2r/dt2)=−ks (r+ y− z)−F−ms (d2y/dt2), (2)

where y and z are the displacements of mass m and floor, respectively, r is the relative
displacement, t is time, and F is the interfacial friction force between masses m and ms ,
as shown in Figure 2. The relative displacement is defined by

r= ys − y, (3)

where ys is the displacement of mass ms . For conciseness, the friction force F is given by
Coulomb’s law, abbreviated as

F=sgn (dr/dt)Fs , (4)

where sgn is the sign function, defined to be +1 or −1 depending on whether its argument
is positive or negative, and Fs is the magnitude of the constant friction force during slip.

The equation of motion for case (A) is also expressed by equations (1) and (2), setting
F=0. On the other hand, the relative displacement r is kept constant for case (B). In this
case, we eliminate F from equations (1) and (2) and obtain

(m+ms )(d2y/dt2)=−(ka + ks )(y− z)− ksrs (5)

where rs is the relative displacement at the moment when masses m and ms are touching.
It is noted that d2r/dt2 =0 when masses m and ms are touching. Then, the friction force
F is obtained from equation (2):

F=−ks (rs + y− z)−ms (d2y/dt2). (6)



.   .732

The two masses continue to be touching if the friction force given by equation (6) does
not exceed the magnitude of constant friction force during slip, i.e.,

=−ks (rs + y− z)−ms (d2y/dt2)=QFs . (7)

The relative motion between the masses occurs again if the condition of equation (7) is
not satisfied.

3. CONTROL LAW CONSIDERATIONS

For a general expression, we introduce the non-dimensional values

ȳ= y/dst , r̄= r/dst , r̄s = rs /dst , z̄= z/dst ,

t=V0t/2p, F� =F/mg, F�s =Fs /mg
(8)

and define the mass ratio l and the spring stiffness ratio n:

l=ms /m, n2 = (ks /ms )/V2
0, (9)

where

V2
0 = ka /m, dst = g/V2

0 (10)

and g is the gravitational acceleration constant.
Then, the solution of equation (5) leads to

v̄2 + a(ȳ− b)2 =D (11)

where D is a constant to be determined by the initial conditions, and

v̄=dȳ/dt, b= z̄− ln2r̄s /(1+ ln2), a=4p2(1+ ln2)/(1+ l). (12)

Equation (11) indicates that the motion of mass m for case (B) is described by an elliptic
trajectory with center (b, 0) in the ȳ–v̄ phase plane. It is noted that b depends on z̄ and
r̄s . Since the floor displacement z̄ varies with time in general, in practice the trajectory is
no longer an ellipse. Nevertheless, the trajectory is controlled by the relative displacement
r̄s , if r̄s is shifted much more than the variation of z̄. In Figure 3, ellipses denoted by the
single-dotted and broken lines are the example of trajectories when r̄s is kept near
maximum and minimum so that b is kept near the minimum and the maximum,
respectively. Here, the floor displacement is taken as zero (z̄=0).

Figure 3. Regions and trajectories in the ȳ–v̄ phase plane.
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Figure 4. Trajectories in the ȳ–v̄ phase plane.

The solution to motion for cases (A) and (C) is obtained from equation (1):

v̄2 + a*(ȳ− b*)2 =D*, (13)

where D* is constant to be determined by the initial condition, and

b*= z̄+F�, a*=4p2. (14)

Equation (13) is also the ellipse of which the center b* moves depending on z̄ and F� in
the ȳ–v̄ phase plane. The trajectory when F� =0 and z̄=0, i.e., the motion for case (A)
with no floor excitation, is shown by the thin solid line in Figure 3. The height to width
ratio of the ellipse denoted by equation (13) is smaller than the one resulting from equation
(11), because the coefficient a* is smaller than a. The difference is remarkable when n is
large.

By switching the elliptic trajectories mentioned above, the motion of mass m is
controlled. To this end, we define the switching function:

s= v̄+ cȳ, c=constant. (15)

Then the phase plane is divided into four regions, I, II, III and IV, by the switching line
s=0 and the vertical line ȳ=0, as shown in Figure 3. The trajectory from point A to
B in region I is made close to the origin if b is kept as small as possible. This indicates
that the joint should be clamped and that the masses m and ms are stuck holding r̄s as large
as possible. When the trajectory reaches the switching line at point B, the joint is
unclamped. Then the trajectory moves from the point B to C in region II, and in the
meantime masses m and ms move independently of each other and the relative displacement
r̄ varies. When r̄ reaches the vicinity of minimum (i.e., maximum b) at point C, the joint
is clamped again. Then, after a short duration of slip between points C and D, the masses
m and ms are stuck again and the trajectory moves from point D to E. When the trajectory
reaches the switching line at point E, the joint is unclamped again, and the procedure
mentioned above is repeated hereafter. As a result, the trajectory converges to the origin
fluctuating in the vicinity of the switching line in region II. In regions III and IV, the joint
is controlled in the same manner as in regions I and II, taking into account the differences
of the signs of ȳ and v̄. This idea is based on VSS theory. It is known that the behavior
of the system when the trajectory moves along the switching line s=0 is given by
ȳ=Y exp(−ct), where Y is constant [12]. This indicates that ȳ simply decreases if cq 0,
and the decay rate increases with c. However, the trajectory may move to regions III and
IV, as shown in Figure 4, when c becomes large, because in practice the trajectory does
not remain on the switching line all the time. The trajectory then converges to the origin
asymptotically, as will be discussed later in Figures 9 and 13.
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Figure 5. Trajectories in the r̄–v̄R phase plane: (a) joint unclamped; (b) joint clamped.

An important consideration of the procedure is the control of r̄. We can follow this
precisely by solving equation (2):

v̄2
R + aR (r̄− a)2 =DR , (16)

where DR is constant and

v̄R =dr̄/dt, a=(ȳ− z̄)(1− n2)/n2 −F�(1+1/l)/n2, aR =4p2n2. (17)

Equation (16) indicates an ellipse, the center co-ordinate a of which moves depending on
ȳ, z̄ and F� in the r̄–v̄R phase plane. It is noted that F� =0 when the joint is unclamped,
and that F� =F�s or −F�s during slip when the joint is clamped. a is dominated by F� if F�s

is much larger than the variation of ȳ and z̄. Here, we set

a0 aOFF = (ȳ− z̄)(1− n2)/n2 (18)

when the joint is unclamped. Then, the trajectory is represented by the single ellipse with
a center co-ordinate r̄= aOFF that shifts depending on ȳ and z̄, as shown in Figure 5(a).
On the other hand, we set

a0 a+ = aOFF − d for v̄R q 0, a0 a− = aOFF + d for v̄R Q 0, (19)

during slip when the joint is clamped, where

d=F�s (1+1/l)/n2. (20)

In this case, the trajectory is a combination of two families of ellipses, as shown in Figure
5(b) by the broken and solid lines, that have center co-ordinates r= a+ and a− when v̄R q 0
and v̄R Q 0, respectively. It is noted that sticking occurs when the trajectory reaches v̄R =0
within the region a+ Q r̄Q a−, and the relative displacement holds the constant value r̄s

Figure 6. Regions and trajectories in the r̄–v̄R phase plane. ----, Unclamped; , clamped.
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thereafter. The value of r̄s depends on the state of motion at the moment at which the joint
is clamped. In order to control r̄s , we define the switching function

sR = v̄R − cR (r̄− aOFF), cR =constant. (21)

The r̄–v̄R phase plane is divided into four regions by the switching line sR =0 and the
vertical line r̄= aOFF, as shown in Figure 6. When the joint is clamped in region I', the
trajectory moves along the curve AR or A*R during interfacial slip, and then r̄ (=r̄s ) is kept
to a minimum at v̄R =0 due to friction. On the other hand, when the joint is clamped in
region II', the trajectory moves along the curve BR or B*R , and then r̄s is kept to a maximum
at v̄R =0. It is noted that the joint is clamped before r̄ reaches its peak when cR q 0.
Furthermore, it is possible to clamp the joint after r̄ has passed the peak by setting cR Q 0.
During this process over a finite duration of slip, the energy is dissipated due to the friction
force. The duration of slip and the energy dissipation increase with the absolute value of
cR , as will be shown later in Figure 8.

Thus, the joint switching control law is described by means of the hierarchy of the state
of ȳ, v̄, r̄ and v̄R :

[The state point (ȳ, v̄) is in region I or region IV of the ȳ–v̄ phase plane]
The joint is clamped if bQ ȳ and the state point (r̄, v̄R ) is in region II' of the r̄–v̄R

phase plane.
[The state point (ȳ, v̄) is in region II or region III of the ȳ–v̄ phase plane]

The joint is clamped if bq ȳ and the state point (r̄, v̄R ) is in region I' of the r̄–v̄R phase
plane.

If these conditions are not satisfied, the joint is unclamped so that r̄ may vary, and clamped
at the moment at which the condition is met.

4. NUMERICAL SIMULATION PROCEDURE

In order to obtain the time history of response, we introduce the state variables

x1 = ȳ, x2 = r̄, x3 = v̄, x4 = v̄R . (22)

Equations (1) and (2) are then combined into state form as

dX/dt=AcX+BcF� +Ccz̄, (23)

where

X=[x1, x2, x3, x4]T,

0, 0, 1, 0

0, 0, 0, 1G
G

G

K

k

G
G

G

L

l

Ac = −4p2, 0, 0, 0
,

4p2(1− n2), −4p2n2, 0, 0

Bc =[0, 0, 4p2, −4p2(1+1/l)]T, Cc =[0, 0, 4p2, −4p2(1− n2)]T. (24)

From the solution of equation (23), we have the state difference equation for the time
interval T between times ti and ti+1:

X(i+1)=AX(i)+BF�(i)+Cz̄(i), i=0, 1, 2, . . . , (25)
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Figure 7. The flowchart of the numerical simulation.

where X(i), F�(i) and z̄(i) are the values of X, F� and z̄ at time ti = iT, respectively, and

A=exp(AcT), B=(A− I)A−1
c Bc , C=(A− I)A−1

c Cc (26)

and I is the unit matrix. The time history, when the joint is unclamped or when the joint
is clamped and interfacial slip occurs, is calculated from equation (25) by setting F� =0,
F�s or −F�s .

On the other hand the state equation when the joint is clamped and touching is obtained
from equation (5):

dX*/dt=A*c X*+B*c x*2 +C*c z̄, (27)

where

X*= [x1, x3]T, A*c =$ 0,
−4p2(1+ ln2)/(1+ l),

1
0%,

B*c =[0, −4p2ln2/(1+ l)]T, C*c =[0, 4p2(1+ ln2)/(1+ l)]T. (28)

It is noted that x4 =0 and that x*2 is the value of x2 at the moment the joint interface is
touching. The state difference equation for this case is also obtained as

X*(i+1)=A*X*(i)+B*x*2 +C*z̄(i), (29)
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where

A*=exp(A*c T), B*= (A*− I)(A*c )−1B*c , C*= (A*− I)(A*c )−1C*c . (30)

By specifying the initial conditions, the X(i)’s are obtained iteratively by applying equation
(25) or equation (29) which are changed according to the switching control law. The
flowchart of the numerical simulation is shown in Figure 7. Note that a computational
error is caused if the time when the interface starts to touch is not taken into consideration
accurately. This time is checked by varying the time interval T when the sign of relative
velocity x3 changes.

5. NUMERICAL EXAMPLES FOR TRANSIENT RESPONSE

Numerical examples are presented to demonstrate the effectiveness and performance of
the method proposed in this paper. The following numerical values are used for the system
parameters unless otherwise stated: l=0·01, n=20, c=10, cR =200, F�s =2. In order to
investigate the transient response under no floor excitation (z̄=0), the initial conditions
are given as ȳ=0, v̄=5, r̄=0 and v̄R =0. In Figures 8(a) and 8(b) are shown the
displacement transient responses and the energy time histories for various values of cR .
The displacement ȳ is monotonic decay with no oscillation and is hardly influenced by cR ,
while the relative displacement r̄ is decaying oscillation, the decay of which increases as
cR leaves zero. It is noted that r̄ is kept constant after it has passed the peak for cR =−100
and −40, as discussed in Figure 6, as it relates to equation (21). The total energy consists
of the energies of the m–ka and ms–ks systems, and the time histories are normalized with
the initial total energy. It is shown that the energy of the m–ka system diminishes rapidly
and is almost independent of cR , while the energy of the ms–ks system dominates the total

Figure 8. (a) The displacement transient response for various values of cR . ——, ȳ; —-—, r̄. (b) The energy
time history for various values of cR . , Total; —-—, m–ka system; ----, ms–ks system.
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Figure 9. The displacement transient response for various values of c.

energy after the energy of the m–ka system has diminished, and varies depending on cR .
This indicates that the vibration of main mass m is suppressed even if the total energy is
not dissipated. Note that the slip and energy dissipation do not occur for cR =0, because
the relative velocity v̄R =0 at the moment at which the joint is clamped. Transient
responses of ȳ for various values of c are shown in Figure 9. The responses for cQ 13 are
monotonic decay, while those for cq 20 are oscillatory decay. It is noted that ȳ reduces
most rapidly in the vicinity of c where the type of response changes. These types of motion
are made clear by considering the phase plane trajectory, as discussed in Figures 3 and
4. The type of motion changes depending on the stiffness ratio n, as will also be discussed
later in Figure 13. The slope c of the switching line corresponds to the time lag from the
instant of peak displacement for actuating the control as suggested by Warkentin and
Semercigil [14].

In order to evaluate the control performance for the transient response, we introduce
the following performance indices:

Gy =0g
TE

0

=ȳ=t dt1>0TE g
TE

0

=ȳ= dt1,
GR =0g

TE

0

=r̄=t dt1>0TE g
TE

0

=r̄= dt1, Ay =0g
TE

0

ȳ dt1>0g
TE

0

=ȳ= dt1. (31)

The indices Gy and GR are defined as the centroidal co-ordinates of the area under the
absolute response curves =ȳ= and =r̄= between times t=0 and t=TE , respectively, and
normalized with TE . They represent decay properties of ȳ and r̄, since they are small for
rapid decay and reach 0·5 for no decay. The index Ay is defined as the ratio of the area
surrounded by the response curve ȳ and horizontal line ȳ=0 to the area under the absolute
response curve =ȳ= between t=0 and t=TE . The type of response ȳ is understood

Figure 10. The variation of Ay , Gy and GR versus cR . —-—, Ay ; , Gy ; ----, GR .
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Figure 11. The variation of Ay , Gy and GR versus c. — - —, Ay ; , Gy ; - - - -, GR .

Figure 12. The variation of Ay , Gy and GR versus n. — - —, Ay ; , Gy ; - - - -, GR .

Figure 13. The phase plane trajectory of ȳ: (a) n=50; (b) n=20; (c) n=10; (d) n=5. , Trajectory;
— - —, switching line (s=0).

by the index Ay , since Ay =1 if ȳ decays monotonically without changing sign, while Ay =0
if ȳ oscillates with constant amplitude.

The effect of cR on the performance indices is shown in Figure 10. It is observed that
Gy and Ay remain constant near 0 and 1 for all of the region of cR , respectively, while GR

is large in the region −40Q cR Q 90. These results coincide with the result of Figure 8(a).
The effect of c on the performance indices is shown in Figure 11. It is shown that Ay =1
for cQ 13 and it decreases with increasing c in the region cq 13, and Gy reaches a
minimum in the vicinity of c=13. These results precisely indicate the characteristic of
displacements shown in Figure 9. Furthermore, we can see that ȳ oscillates with no decay
for cq 50 because Gy reaches 0·5 and Ay is almost zero in that region. The effect of the
stiffness ratio n on the performance indices is shown in Figure 12. The displacements ȳ
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Figure 14. The variation of Ay , Gy and GR versus l. — - —, Ay ; , Gy ; ----, GR .

Figure 15. The variation of Ay , Gy and GR versus F�s . — - —, Ay ; , Gy ; ----, GR .

Figure 16. (a) Transmissibility Ty for various F�s : —-—, F�s =0·1, ----, 0·5; , 2·0; —··—, passive (z=0·2).
(b) Transmissibility Tys for various F�s ; — - —, F�s =0·1; ----, 0·5; , 2·0.

and r̄ are effectively suppressed for nq 11 where Gy and GR are small. We also see that
ȳ decays monotonically for nq 15, where Ay =1. The characteristics of the present method
are clarified by the trajectories in the ȳ–v̄ phase plane, as shown in Figure 13 for n=5,
10, 20 and 50. The trajectory for n=50 is trapped on the switching line s=0 and
converges to the origin in the same manner as the sliding mode of VSS. As a result, ȳ decays
monotonically. This feature is remarkable when the switching interval is short. Note that
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the switching interval depends on the time duration in which b moves between bmin and
bmax when the joint is unclamped, as discussed in Figure 3, and is determined by the period
of the ms–ks system. The stiffness n defined in equation (9) originally indicates the ratio
between the natural frequencies of the ms–ks and m–ka systems. As a result, the switching
interval depends on n. This switching interval corresponds to the control duration
suggested by Warkentin and Semercigil [14]. With decreasing n, the switching interval
increases and the trajectory leaves the switching line. Then, the trajectory spirals into the
origin showing oscillatory decay of ȳ as for cases n=5 and n=10. The effect of mass ratio
l=ms /m on the performance indices is shown in Figure 14. The performance declines with
decreasing l, because the spring stiffness ks , becomes small for small mass ms under
constant stiffness ratio n2 = (ks /ms )/V2

0. In general, the auxiliary mass ms , i.e., l, should
be set as small as possible in order to save the space and cost of the system. The effect
of the friction force F�s is shown in Figure 15. The non-dimensional parameter F�s is the
ratio between the magnitude of friction force and the force that is needed to support mass
m under gravitation. The vibration is not reduced for F�s Q 0·1 because there is no touching
and the proposed control logic does not hold when F�s is small. It is also desirable to set
F�s as small as possible, in order to save the power of the brake device.

6. NUMERICAL EXAMPLES FOR DISPLACEMENT TRANSMISSIBILITY

The vibration isolation performance is investigated by the displacement transmissibility
ratio when the floor is subject to the harmonic displacement excitation z̄=Zamp sin (2pfzt),
where Zamp is the amplitude and fz is the frequency. The displacement transmissibility ratios
Ty and Tys are defined by Ty =(ȳ)rms /(z̄)rms and Tys =(ȳs )rms /(z̄)rms , where (ȳ)rms , (ȳs )rms and
(z̄)rms are the root mean square (r.m.s.) of displacements ȳ, ȳs and z̄, respectively. The
system parameters denoted in the previous section are used unless otherwise stated, and
initial conditions of the masses are set at zero. In Figures 16(a) and 16(b) are shown the
transmissibilities Ty and Tys versus fz with Zamp =0·2 for various values of F�s , respectively.
The transmissibility of the passive m–ka system with damping ratio z=0·2 is also shown
in Figure 16(a). Although the transmissibility for F�s =0·1 becomes large in the vicinity of

Figure 17. (a) Transmissibility Ty for various Zamp : , Zamp =0·1; ----, 1·0; —-—, 3·0; —··—, passive
(z=0·2). (b) Transmissibility Tys for various Zamp : , Zamp =0·1; ----, 1·0; —-—, 3·0.
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the non-dimensional natural frequency of the m–ka system (fz =1), those for F�s =0·5 and
F�s =2·0 have no peak and decrease with an increase in fz . Thus, the main mass m is isolated
from the floor excitation for F�s q 0·5 and fz q 1. It is noted that, in practice, the natural
frequency of the m–ka system can be set as small as required by decreasing the stiffness
ka without degenerating the transient response and static stability, because they are
compensated by the auxiliary stiffness ks if ks is set large. The transmissibility Tys gradually
increases with increasing fz and becomes large in the vicinity of the non-dimensional
natural frequency of the ms–ks system, fz =20. This frequency corresponds to the
parameter n=20, as mentioned in Figure 13. Thus the vibration of auxiliary mass ms is
amplified, but the excess vibration is avoided for F�s q 2·0. The transmissibility ratios Ty

and Tys for the floor amplitudes Zamp =0·1, 1 and 3, with F�s =2, are shown in Figures 17(a)
and 17(b) respectively. The transmissibilities have large resonant peaks for large Zamp . This
peak is improved by increasing the friction force F�s .

7. CONCLUSIONS

This paper presents a new method to isolate and reduce the vibration by on–off control
of the friction force at the auxiliary spring support. The switching control law is deduced
from the VSS theory. In the numerical simulations, it is shown that the energy dissipation
due to friction is controlled by the slope cR of switching line in the phase plane of relative
displacement and velocity. Furthermore, it is found that the energy of the main system
is reduced even if the total energy is not dissipated, because energy is transferred to the
auxiliary system. It is also shown that the motion of the main mass for the transient
response is classified into monotonic decay similar to the VSS sliding mode and oscillatory
decay. This type of motion depends on the slope c of the switching line in the phase plane
of the main mass displacement and velocity, and it is found that the main mass
displacement decreases most rapidly in the vicinity of c where the type of motion changes.
The effects of the mass ratio l, the frequency ratio n and the friction force F�s on the
transient response are investigated and shown by the performance indices. The numerical
results for the displacement transmissibility confirm high vibration isolation performance
with no resonant peaks.
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APPENDIX: NOMENCLATURE

Ay performance index that indicates the type of main mass response
c slope of the switching line in the ȳ–v̄ phase plane
cR slope of the switching line in the r̄–v̄R phase plane
fz frequency of the floor harmonic displacement excitation
Fs , F�s magnitude of the constant friction force during slip
GR performance index that indicates the decay property of r̄
Gy performance index that indicates the decay property of ȳ
ka stiffness of the main spring
ks stiffness of the auxiliary spring
m mass of the main object to be reduced by vibration
ms mass of the auxiliary joint switching device
r, r̄ relative displacement between the main and auxiliary masses
rs , r̄s relative displacement at the moment the main and auxiliary masses are touching
s switching function in the ȳ–v̄ phase plane
sR switching function in the r̄–v̄R phase plane
t, t time
Ty displacement transmissibility of the main mass
Tys displacement transmissibility of the auxiliary mass
v̄ velocity of the main mass
v̄R relative velocity
y, ȳ displacement of the main mass
ys displacement of the auxiliary mass
z, z̄ displacement of the floor
l mass ratio
n stiffness ratio


